NIST’s New Compact Atomic Clock Design Uses Cold Atoms to Boost Precision

1000 Times More Precise Than ‘Hot Atom Clocks

NIST physicist Elizabeth Donley with a compact atomic clock design that could help improve precision in ultraportable clocks. About 1 million cold rubidium atoms are held in a vacuum chamber in the lower left of the photo. On the screen is a close-up of the atom trapping region of the apparatus. Credit: vonDauster/NIST

NIST physicist Elizabeth Donley with a compact atomic clock design that could help improve precision in ultraportable clocks. About 1 million cold rubidium atoms are held in a vacuum chamber in the lower left of the photo. On the screen is a close-up of the atom trapping region of the apparatus.
Credit: vonDauster/NISThigh resolution version

Gaithersburg MD, USA — Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a compact atomic clock design that relies on cold rubidium atoms instead of the usual hot atoms, a switch that promises improved precision and stability.

Described in a new paper,* the heart of the prototype clock (the vacuum chamber containing the atoms) is about the size of a coffee mug, 150 cubic centimeters, set in a small table of lasers and electronics.

This is about 10 times larger than NIST’s chip-scale atomic clock packages—for now.
Continue reading