High-speed Chemical Imaging of Tissues

With Enhanced NIST Instrument

mouse liver brain


High-speed BCARS allows detailed mapping of specific components of tissue samples. A false-color BCARS image of mouse liver tissue (left) picks out cell nuclei in blue, collagen in orange and proteins in green. An image of tumor and normal brain tissue from a mouse (right) has been colored to show cell nuclei in blue, lipids in red and red blood cells in green. Images show an area about 200 micrometers across.
Credit: Camp/NIST
View hi-resolution image

Gaithersburg MD, USA  —  A research team from the National Institute of Standards and Technology (NIST), working with the Cleveland Clinic, has demonstrated a dramatically improved technique for analyzing biological cells and tissues based on characteristic molecular vibration “signatures.”

The new NIST technique is an advanced form of the widely used spontaneous Raman spectroscopy, but one that delivers signals that are 10,000 times stronger than obtained from spontaneous Raman scattering, and 100 times stronger than obtained from comparable “coherent Raman” instruments, and uses a much larger portion of the vibrational spectrum of interest to cell biologists.* Continue reading